#### **Reaction Rate and Temperature**

- Rates of chemical reactions increase with increasing temperature.
  - This means k, the rate constant in the differential rate law for any reaction, increases with T, the temperature.
- ✓ Typical chemical reactions show roughly a doubling of rate for every 10° C temperature increase.

#### **Arrhenius Theory**

- The first successful interpretation of the relationship between k and T was made by Svante Arrhenius in 1887.
  - Arrhenius reasoned that any reaction process must proceed through a *transition state*, involving formation of a high-energy species, called the *activated complex*, which then breaks apart to form products.

$$A + B \rightarrow [AB^{\ddagger}] \rightarrow C + D$$
  
activated  
complex

- The difference in potential energy between the activated complex,  $AB^{\ddagger}$ , and the reactants, A + B, is the *activation energy of the forward reaction*,  $E_a^f$ .
- The difference in potential energy between the activated complex,  $AB^{\ddagger}$ , and the products, C + D, is the *activation energy of the reverse reaction*,  $E_a^r$ .

# Potential Energy Curve (Arrhenius Plot) for a One-Step Exothermic Reaction $A + B \rightarrow C + D$



Progress of Reaction→

If  $E_a^f < E_a^r$ , then  $\Delta H_{\text{rxn}} < 0$  (exothermic)

## Potential Energy Curve (Arrhenius Plot) for a One-Step Endothermic Reaction

$$A + B \rightarrow C + D$$



Progress of Reaction→

If  $E_a^f > E_a^r$ , then  $\Delta H_{\text{rxn}} > 0$  (endothermic)

## **Arrhenius Theory and The Empirical Differential Rate Law**

• The differential rate law for a reaction has the general form

$$Rate \propto [reactants]^n$$

• By Arrhenius Theory, the rate of a reaction must be proportional to the concentration of activated complex:

$$Rate \propto [reactants]^n$$
 (fraction activated)

• We can make this an equation by introducing the proportionality constant, A, called the *Arrhenius constant*.

$$Rate = A[reactants]^n$$
 (fraction activated)

 The Arrhenius constant is specific to the reaction and includes effects of molecular shape and orientation on the effectiveness of converting reactants into products.

#### **Collision Theory**

- The fraction of reactant molecules that will be capable of forming product is the portion of the population that has the minimum necessary energy to form the reactive activated complex.
- We can estimate this on the basis of an extension of the kinetic molecular theory, called *collision theory*.



## The Arrhenius Equation and Collision Theory

• The fraction with the necessary energy to react, as given by the Boltzmann distribution, is

fraction activated = 
$$\frac{\text{[activated complex]}}{\text{[reactants]}} = e^{-E_d/RT}$$

where e = base of the natural logarithm R = ideal gas constant = 8.3143 J/K·molT = temperature in Kelvin

• Substituting this into our expression for *Rate* we get

$$Rate = Ae^{-E_a/RT}[reactants]^n$$

• We have seen that experimentally our rate law expressions have the form

$$Rate = k[reactants]^n$$

• Therefore,

$$k = Ae^{-E_a/RT}$$

which is called the Arrhenius equation.

#### **Logarithm Form of the Arrhenius Equation**

• Taking natural logarithms of both sides:

$$\ln k = \ln A - E_a / RT$$

• Rearranging:

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

This is a linear equation of the form y = mx + b.

#### **Linear Plot of the Arrhenius Equation**



#### **Two-Temperature Form of the Arrhenius Equation**

- Only two points are needed to define a straight line, so only two pairs of  $\ln k$  and 1/T data are needed to define the slope.
- At two different temperatures,  $T_1$  and  $T_2$ , we can write the expressions for the rate constants,  $k_1$  and  $k_2$ :

$$\ln k_1 = \frac{-E_a}{R} \left(\frac{1}{T_1}\right) + \ln A$$

$$\ln k_2 = \frac{-E_a}{R} \left(\frac{1}{T_2}\right) + \ln A$$

• Subtracting the second equation from the first:

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right)$$